Hierarchical Discriminant Regression
نویسندگان
چکیده
ÐThe main motivation of this paper is to propose a new classification and regression method for challenging highdimensional data. The proposed new technique casts classification problems (class labels as output) and regression problems (numeric values as output) into a unified regression problem. This unified view enables classification problems to use numeric information in the output space that is available for regression problems but are traditionally not readily available for classification problemsÐdistance metric among clustered class labels for coarse and fine classifications. A doubly clustered subspace-based hierarchical discriminating regression (HDR) method is proposed in this work. The major characteristics include: 1) Clustering is performed in both output space and input space at each internal node, termed adoubly clustered.o Clustering in the output space provides virtual labels for computing clusters in the input space. 2) Discriminants in the input space are automatically derived from the clusters in the input space. These discriminants span the discriminating subspace at each internal node of the tree. 3) A hierarchical probability distribution model is applied to the resulting discriminating subspace at each internal node. This realizes a coarse-to-fine approximation of probability distribution of the input samples, in the hierarchical discriminating subspaces. No global distribution models are assumed. 4) To relax the per class sample requirement of traditional discriminant analysis techniques, a sample-size dependent negative-log-likelihood (NLL) is introduced. This new technique is designed for automatically dealing with small-sample applications, large-sample applications, and unbalanced-sample applications. 5) The execution of HDR method is fast, due to the empirical logarithmic time complexity of the HDR algorithm. Although the method is applicable to any data, we report the experimental results for three types of data: synthetic data for examining the near-optimal performance, large raw face-image data bases, and traditional databases with manually selected features along with a comparison with some major existing methods, such as CART, C5.0, and OC1. Index TermsÐDiscriminant analysis, classification and regression, decision trees, high-dimensional data, image retrieval.
منابع مشابه
248 Remotely Sensed Data Characterization
EMPs Extended morphological profiles EMPs Extended morphological profiles LDA Linear discriminant analysis LogDA Logarithmic discriminant analysis MLR Multinomial logistic regression MLRsubMRF Subspace-based multinomial logistic regression followed by Markov random fields MPs Morphological profiles MRFs Markov random fields PCA Principal component analysis QDA Quadratic discriminant analysis RH...
متن کاملVisual motion based behavior learning using hierarchical discriminant regression
This paper presents a new technique which incrementally builds a hierarchical discriminant regression (IHDR) tree for generation of motion based robot reactions. The robot learned the desired reactions from motion change images, without using other pre-defined features. The generation from training cases is accomplished through the automatically constructed IHDR tree, which automatically derive...
متن کاملA new approach to cluster analysis: the clustering-function-based method
The purpose of this paper is to present a new statistical approach to hierarchical cluster analysis with n objects measured on p variables. Motivated by the model of multivariate analysis of variance and the method of maximum likelihood, a clustering problem is formulated as a least squares optimisation problem, simultaneously solving for both an n-vector of unknown group membership of objects ...
متن کاملMultivariate feature selection and hierarchical classification for infrared spectroscopy: serum-based detection of bovine spongiform encephalopathy.
A hierarchical scheme has been developed for detection of bovine spongiform encephalopathy (BSE) in serum on the basis of its infrared spectral signature. In the first stage, binary subsets between samples originating from diseased and non-diseased cattle are defined along known covariates within the data set. Random forests are then used to select spectral channels on each subset, on the basis...
متن کاملCombining Methods in Supervised Classification: a Comparative Study on Discrete and Continuous Problems
• Often in discriminant analysis several models are estimated but based on some validation criterion, a single model is selected. In the purpose of taking profit from several potential models, classification rules combining models are considered in this article. More precisely two ways of combining models are considered: a serial combining method and a hierarchical combining method. Serial comb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 22 شماره
صفحات -
تاریخ انتشار 2000